

EXAMINATIONS COUNCIL OF ESWATINI Eswatini General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER		CANDIDATE NUMBER			
PHYSICAL SC	IENCE		6888/03		
Paper 3 Practical Test		Oc	October/November 2020		
			1 hour 15 minutes		
	swer on the Question Paper.				
	inais. As listed in Confidential instructions.				
READ THESE	INSTRUCTIONS FIRST				

Write your Centre number, candidate number and name on the spaces provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working.

Do **not** use staples, paper clips, highlighters, glue or correction fluid.

Do **not** write on the barcode.

Answer all questions.

You may use an electronic calculator.

You may lose marks if you do not show your working or if you do not use appropriate units.

Chemistry practical notes for this paper are printed on page 9.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
Total	

This document consists of 9 printed pages and 3 blank pages.

© ECESWA 2020 [Turn over

- 1 (a) You are provided with two solutions: magnesium chloride and sodium carbonate.
 - (i) Pour about 2 cm³ of magnesium chloride solution into test-tube **A**.

Measure the temperature of the magnesium chloride solution using the thermometer.

Record this temperature as T_0 .

Note: always rinse the thermometer and the measuring cylinder before using them again.

(ii) Pour about 2 cm³ of sodium carbonate solution into test-tube **B**.

Measure the temperature of the sodium carbonate solution.

Record this temperature also as T_0 .

(iii) Pour the contents of test-tube A into test-tube B to mix the two solutions.

Insert the thermometer and immediately start the stop-watch.

Record the temperature, T_1 of the mixture after 30 seconds in Table 1.1.

Continue recording the temperatures T_2 , T_3 and T_4 at 30 second intervals.

Table 1.1

time/s	temperature/° C
30	T ₁ =
60	T ₂ =
90	T ₃ =
120	T ₄ =

(iv)	Describe the relationship between the time and the temperature in Table 1.1 as	s the
	reaction progresses.	

	F 4 7

(v)	State the type of reaction that is taking place between magnesium chloride and sodium carbonate solutions.
	Give a reason for your answer in terms of energy changes.
	type of reaction
	reason
	[2]
(vi)	Describe an observation that shows that the reaction of magnesium chloride with sodium carbonate is an example of a chemical change.
	[1]
(vii)	State one precaution you should take to ensure that an accurate reading is taken using a thermometer.
	[1]

(b) Dilute sulfuric acid is reacted with excess sodium hydroxide solution.

The temperature of the solution formed is measured at 30 second intervals.

Table 1.2 shows the results of this reaction.

Table 1.2

time/s	temperature/° C
0	25
30	28
60	30
90	31.5
120	32.5
150	33
180	33

(i) Plot these results in Fig. 1.1.

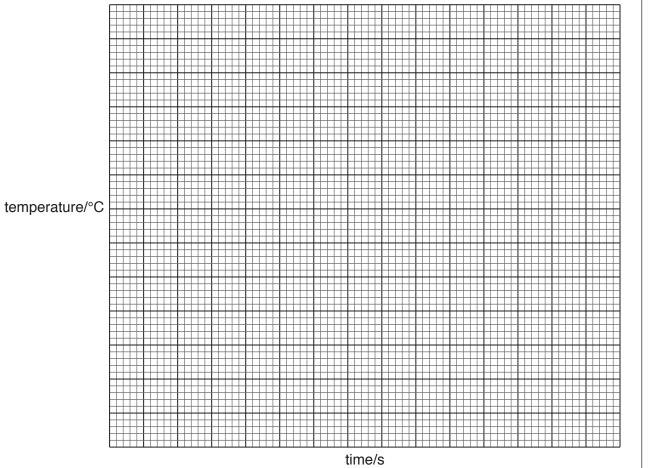
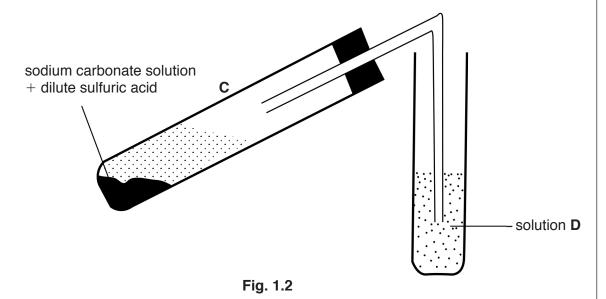


Fig. 1.1


[3]

(ii)	Name the substance that limits the rate of this chemical reaction.	
	[1]	
(iii)	Suggest the value of the temperature after four minutes (240 seconds).	
	°C [1]	
Plac	ce about 2 cm ³ of sodium carbonate solution in test-tube C .	
Add	Add about 2 cm ³ of dilute sulfuric acid into the test-tube and close with a stopper fitted	

Immerse the delivery tube in solution **D** as shown in Fig. 1.2.

(c)

with a delivery tube.

	•
(d)	Place about 5 cm ³ of magnesium chloride solution into a test-tube.
	Add about 2 cm ³ of aqueous silver nitrate into the test-tube.
	Describe how you can obtain a pure salt of the precipitate from the mixture.
	[3]
	are to carry out an experiment to determine an approximate volume of the material king a small glass beaker.
(a)	Use the two blocks of wood and the ruler to measure the external diameter, d , of the small glass beaker.
	$d = \dots cm$ [1]
(b)	Draw a simple labelled diagram to show how you used the blocks of wood and the ruler
	to find, as accurately as possible, a value for the diameter.
	[2]
(c)	Calculate the external radius, <i>r</i> , of the bottom of the beaker.
(6)	
	$\left(r = \frac{d}{2}\right)$
	r = [1]
	1 –

2

(d)	Mea	asure and record the height, h, of the beaker.
		h =[1]
(e)		culate the external volume, V_1 , of the beaker using the equation = $\pi r^2 h$.
	Sho	ow your working.
		$V_1 = cm^3$ [2]
(f)	(i)	Now you are to measure the internal volume of the beaker.
		Place the beaker on a flat surface.
		Pour water into the measuring cylinder to a volume of your choice.
		Note the volume in the measuring cylinder.
		Pour the water in the measuring cylinder into the beaker.
		Repeat steps 1 to 3 until beaker is filled with water.
		Record the total volume of water in the beaker.
		$V_2 = \dots cm^3$ [1]
	(ii)	State one precaution that you have taken when reading the volume of the water in the measuring cylinder.
(g)	Cal	
(9)		ow your working.
	Onc	w your working.
		$V = \dots cm^3$ [2]

(h)		the displacement can, measuring cylinder and water to find again the volume of material used to make the beaker.
	(i)	Describe how you measured the volume of the material used to make the beaker.
	(ii)	Record the volume of the material used to make the beaker.
		$V = cm^3$ [1]
(i)		lain why the volume of the material used to make the beaker in (g) is different from volume in (h)(ii) .
		[1]
(j)		culate the mean of your two values for V in (g) and (h)(ii) . www.your.working.
(1.)	Date	$mean\ volume = \dots cm^3 [2]$
(k)		scribe how you would measure the mass of the water in the beaker in (f)(i).
		ואו
		[3]

CHEMISTRY PRACTICAL NOTES

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (<i>Cl</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminum foil; warm carefully	
sulfate (SO ₄ ²⁻) [in solution]	acidify, then add aqueous barium chloride or aqueous barium nitrate	white ppt

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	Effect of aqueous ammonia
ammonium (NH ₄ +)	ammonia produced on warming	_
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colorless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.